File units.hpp
File List > include > libhal-util > units.hpp
Go to the documentation of this file
// Copyright 2023 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <chrono>
#include <cmath>
#include <cstdint>
#include <ios>
#include <libhal/error.hpp>
#include <libhal/timeout.hpp>
#include <libhal/units.hpp>
#include "math.hpp"
namespace hal {
[[nodiscard]] constexpr std::int64_t cycles_per(hertz p_source,
hal::time_duration p_duration)
{
// Full Equation:
// / ratio_num \_
// frequency_hz * |period| * | ----------- | = cycles
// \ ratio_den /
//
// std::chrono::nanoseconds::period::num == 1
// std::chrono::nanoseconds::period::den == 1,000,000
const auto denominator = decltype(p_duration)::period::den;
const auto float_count = static_cast<float>(p_duration.count());
const auto cycle_count = (float_count * p_source) / denominator;
return static_cast<std::int64_t>(cycle_count);
}
template<typename Period>
constexpr std::chrono::duration<int64_t, Period> wavelength(hertz p_source)
{
using duration = std::chrono::duration<int64_t, Period>;
static_assert(Period::num == 1, "The period ratio numerator must be 1");
static_assert(Period::den >= 1,
"The period ratio denominator must be 1 or greater than 1.");
constexpr auto denominator = static_cast<decltype(p_source)>(Period::den);
auto period = (1.0f / p_source) * denominator;
if (std::isinf(period)) {
return duration(std::numeric_limits<int64_t>::max());
}
return duration(static_cast<int64_t>(period));
}
constexpr float wavelength(hertz p_source)
{
if (equals(p_source, 0.0f)) {
return 0.0f;
}
auto duration = (1.0f / p_source);
return float(duration);
}
[[nodiscard]] inline result<std::chrono::nanoseconds> duration_from_cycles(
hertz p_source,
uint32_t p_cycles)
{
// Full Equation (based on the equation in cycles_per()):
//
//
// / cycles * ratio_den \_
// |period| = | ---------------------------|
// \ frequency_hz * ratio_num /
//
constexpr auto ratio_den = std::chrono::nanoseconds::period::den;
constexpr auto ratio_num = std::chrono::nanoseconds::period::num;
constexpr auto int_min = std::numeric_limits<std::int64_t>::min();
constexpr auto int_max = std::numeric_limits<std::int64_t>::max();
constexpr auto float_int_min = static_cast<float>(int_min);
constexpr auto float_int_max = static_cast<float>(int_max);
const auto source = std::abs(p_source);
const auto float_cycles = static_cast<float>(p_cycles);
const auto nanoseconds = (float_cycles * ratio_den) / (source * ratio_num);
if (float_int_min <= nanoseconds && nanoseconds <= float_int_max) {
return std::chrono::nanoseconds(static_cast<std::int64_t>(nanoseconds));
}
return new_error(std::errc::result_out_of_range);
}
template<class CharT, class Traits>
inline std::basic_ostream<CharT, Traits>& operator<<(
std::basic_ostream<CharT, Traits>& p_ostream,
const hal::byte& p_byte)
{
return p_ostream << std::hex << "0x" << unsigned(p_byte);
}
} // namespace hal